CHEMISTRY OF AATFRIÁ

VOLUME 6, NUMBER 9

SEPTEMBER 1994

© Copyright 1994 by the American Chemical Society

Communications

Hydrothermal Synthesis and Structural Characterization of the Two New Vanadium Arsenates $H_2NC_4H_8NH_2[(V^{IV}O)_2(HAsO_4)_2(H_2AsO_4)_2]$ and $H_3NCH_2CH_2NH_3[V^{III}(HAsO_4)_2(H_2AsO_4)]\cdot H_2O$

Robert C. Haushalter,^{*,1a} Zhanwen Wang,^{1b} Linda M. Meyer,^{1a} Sandeep S. Dhingra,^{Ia} Mark E. Thompson,^{*,1c} and Jon Zubieta^{*,1d}

> NEC Research Institute, 4 Independence Way Princeton, New Jersey 08540

Received February 8, 1994 Revised Manuscript Received May 30, 1994

While layered and three-dimensional (3-D) metal oxides are very common, examples of discrete 1-D transition metal oxides are quite rare. Known examples of these 1-D polymers are provided by the phosphates Mo(OH)₃PO₄² and VO(HPO₄)·4H₂O³ while Na⁺ bridged strings are found in $(PPh_4)_2[(H_3O)_2NaMo_6O_{15}(HPO_4) (H_2PO_4)_3]$.⁴ The 1-D metal oxide $(Et_4N)_2[Mo_4O_8 (PO_4)_{2/2}(H_{1.5}PO_4)_2$)·2H₂O,⁵ which contains chains composed of metal-metal bonded Mo₄O₈ "cubes" bridged together by (PO₄)_{2/2} groups into 1-D chains, displays a unique type of chirality. We report here the hydrothermal synthesis of the 1-D V⁴⁺ polymer $H_2NC_4H_8$ -NH₂[(V^{IV}O)₂(HAsO₄)₂(H₂AsO₄)₂] (1) and the V³⁺ chain $compound H_3NCH_2CH_2NH_3[V^{III}(HAsO_4)_2(H_2AsO_4)]\cdot H_2O$ (2) which represent the first examples of 1-D vanadium arsenate polymers with organic cations.

Green plates of the 1-D material H₂NC₄H₈NH₂- $[(V^{IV}O)_2(HAsO_4)_2(H_2AsO_4)_2]$ (1) were prepared in 86% yield by the reaction of VCl₄:piperazine:As₂O₅:H₂O in the mole ratios of 1:3:5:84 at 150 °C for 72 hours. Comparison of the measured X-ray powder pattern of 1 to the pattern calculated from the coordinates of the single-crystal study show that 1 is formed as a pure single-phase material. Single-crystal X-ray diffraction studies of 1 revealed novel [(VIVO)2(HAsO4)2(H2AsO4)2]2chains and piperazine dications.⁶ A projection of the unit cell contents down [001] is shown in Figure 1. The VO_6 octahedra are bridged by HAsO₄ and H₂AsO₄, the hydrogen atoms of which were located on the later difference Fourier maps but were kept fixed during refinement. The chains are hydrogen bonded into sheets, via-O-H-O-As hydrogen bonds (in the range from 2.573 to 2.777 Å), that lie in planes which are parallel to the (101) plane. The H-bonded V-As-O sheets are interleaved by the organic dications, the NH₂ groups of which are also H bonded to some of the O atoms of the chains. The backbone of these chains are composed of VO₆ octahedra sharing opposite corners generating strings running parallel to the crystallographic [001] direction as shown in Figure 2a. The -V-O-V-O- infinite chain has short V-O vanadyl contacts of 1.627(4) Å alternating with longer V-O distances of 2.248(4) Å. The short V=O bonds trans to longer V–O contacts (i.e., the V atoms displaced toward one of the vertices along the 4-fold axis of the octahedron) is typical of V^{4+} . The 4+ oxidation state is confirmed by valence sum calculations.⁷ Corner sharing 1-D chains of VO₆ octahedra are also found in the 3-D materials NaVOAsO48 and NH4VOPO49 which have

^{(1) (}a) NEC Research Institute. (b) Syracuse and Princeton Universities. (c) Princeton University. (d) Syracuse University. (2) Kierkegaard, P. Acta Chem. Scand. 1958, 12, 1701.

⁽³⁾ Leonowicz, M. E.; Johnson, J. W.; Brody, J. F.; Shannon, A. F.; Newsam, J. M. J. Solid State Chem. 1985, 56, 370.
(4) Haushalter, R. C.; Lai, F. W. Inorg. Chem. 1989, 28, 2904.
(5) Mundi, L. A.; Haushalter, R. C. J. Am. Chem. Soc. 1991, 113,

^{6340.}

⁽⁶⁾ Crystal data for 1: orthorhombic, space group *Pbca* with a = 14.567(1), b = 17.495(1), and c = 7.277(1) Å, V = 1854.5(4) Å³, Z = 8 and $D_{calc} = 2.807$ g cm⁻³. $R(R_w) = 0.029(0.036)$ for 136 variables and 2084 observed data with $I > 3\sigma I$.

Bobserved data with T Solid K. K. Acta Crystallogr. 1976, B32, 1957.
 Haddad, A.; Jouini, T.; Piffard, Y. Eur. J. Solid State Chem. 1992. 29. 57.

Figure 1. Projection of the structure of **1** down the [001] direction with the interlamellar organic cations omitted for clarity. The individual 1-D chains are H-bonded into sheets via the H_x AsO₄ groups.

Figure 2. (a) Polyhedral representation of the chain of edge sharing V^{4+} octahedra and $\{AsO_4\}$ tetrahedra in 1. (b) Similar view of the V^{3+} octahedra and $\{AsO_4\}$ groups in 2.

chains sharing trans vertices and alternating cis-trans vertices, respectively. In contrast to the very darkly colored NaVOPO₄ and NH₄VOPO₄, arsenate 1 is transparent and green.

Using V₂O₃ as the V source and ethylenediamine as the organic template has allowed the isolation of H₃-NCH₂CH₂NH₃[V(HAsO₄)₂(H₂AsO₄)]·H₂O (**2**), a 1-D vanadium arsenate polymer with V(III)O₆ octahedra. The reaction of V₂O₃:HCl:ethylenediamine:As₂O₅:H₂O in the mole ratios of 1:16:18:13:222 at 150 °C for 72 h gives a 45% yield of green needles of **2**. Single-crystal X-ray diffraction shows¹⁰ that compound **2**, like arsenate **1**, also has VO₆ octahedra bridged into 1-D chains via {HAsO₄} and {H₂AsO₄} groups. The main difference between the two polymers is that arsenate **2** contains

Figure 3. Projection of the structure of **2** down the [100] direction showing the pendant arsenate groups H-bonded to the other chains, the H_2O and to the ethylenediammonium cations.

chains of isolated VO₆ octahedra (Figure 2b) with two $\{HAsO_4\}$ and one $\{H_2AsO_4\}$ per vanadium octahedron, but with no covalent intrachain -V-O-V- interactions. The two extra free vertices in the octahedra of 2 as compared to 1 are compensated by two vertices from an additional $\{AsO_4\}$ tetrahedron. Unlike the distorted octahedra of V^{4+} found in 1, the octahedra in 2 are quite regular and the V–O bonds all lie in the range of 2.000-(4)-2.017(4) Å indicative of V³⁺. This oxidation state is confirmed by valence sum calculations. The high quality of the diffraction data allowed the resolution of the H atoms on the $\{AsO_4\}$ tetrahedra, two of which were found on O1 and O2 terminally bound to As1 while one each were found on O11 on As2 and O10 on As3 respectively. Whereas arsenate 1 has its chains hydrogen bonded into sheets with the organic cations between the layers, the chains in arsenate **2** are in an arrangement more reminiscent of the close packing of cylinders (Figure 3). Also shown in Figure 3 is the water molecule that is hydrogen bonded to the arsenate tetrahedra from three different chains. The chains are also H-bonded to the $-NH_3^+$ groups of the ethylenediammonium cations. Chains structurally similar to those found in 2 were recently reported in the vanadium phosphate $Sr_2[V(PO_4)_2(H_2PO_4)].^{11}$

In summary, the results reported here show that it is possible to prepare by means of hydrothermal synthesis a new type of 1-D inorganic oxide based on VO₆ octahedra and AsO₄ tetrahedra. The solid-state structures of both materials are strongly influenced by the hydrogen bonding of the pendant H_x AsO₄ groups to one another and to the polar organic cationic templates.

Acknowledgment. The work at Syracuse University was supported by NSF Grant CHE 9119910.

⁽⁹⁾ Haushalter, R. C.; Chen, Q.; Soghomonian, V.; Zubieta, J.; O'Connor, C. J. J. Solid State Chem., in press.

⁽¹⁰⁾ Crystal data for **2**: monoclinic, space group $P2_1$ with a = 4.774. (2), b = 16.072(1), and c = 8.687(1) Å, $\beta = 90.56(2)^\circ$, V = 666.5(2) Å³, Z = 2. $R(R_w) = 0.021(0.029)$ for 189 variables and 1917 observed data with I > $3\sigma I$.

Supplementary Material Available: Additional experimental crystallographic details (12 pages); observed and calculated structure factors (15 pages). Ordering information is given on any current masthead page.

⁽¹¹⁾ Sr₂[V(PO₄)₂(H₂PO₄)]: Lii, K.-H.; Lee, T.-C.; Liu, S.-N., Wang, S.-L. J. Chem. Soc., Dalton Trans. **1993**, 1051.